By LT Andrew Pfau*
Even as the private sector and academia have made rapid progress in the field of Artificial Intelligence (AI) and Machine Learning (ML), the Department of Defense (DoD) remains hamstrung by significant technical and policy challenges. Only a fraction of this civilian-driven progress can be applied to the AI and ML models and systems needed by the DoD; the uniquely military operational environments and modes of employment create unique development challenges for these potentially dominant systems. In order for ML systems to be successful once fielded, these issues must be considered now. The problems of dataset curation, data scarcity, updating models, and trust between humans and machines will challenge engineers in their efforts to create accurate, reliable, and relevant AI/ML systems.